Sequential Land Cover Classification

نویسنده

  • Etienne Ackermann
چکیده

Land cover classification using remotely sensed data is a critical first step in large-scale environmental monitoring, resource management and regional planning. The classification task is made difficult by severe atmospheric scattering and absorption, seasonal variation, spatial dependence, complex surface dynamics and geometries, and large intra-class variability. Most of the recent research effort in land cover classification has gone into the development of increasingly robust and accurate (and also increasingly complex) classifiers by constructing–often in an ad hoc manner–multispectral, multitemporal, multisource classifiers using modern machine learning techniques such as artificial neural networks, fuzzy-sets, and expert systems. However, the focus has always been (almost exclusively) on increasing the classification accuracy of newly developed classifiers. We would of course like to perform land cover classification (i) as accurately as possible, but also (ii) as quickly as possible. Unfortunately there exists a tradeoff between these two requirements, since the faster we must make a decision, the lower we expect our classification accuracy to be, and conversely, a higher classification accuracy typically requires that we observe more samples (i.e., we must wait longer for a decision). Sequential analysis provides an attractive (indeed an optimal) solution to handling this tradeoff between the classification accuracy and the detection delay–and it is the aim of this study to apply sequential analysis to the land cover classification task. Furthermore, this study deals exclusively with the binary classification of coarse resolution MODIS time series data in the Gauteng region in South Africa, and more specifically, the task of discriminating between residential areas and vegetation is considered. Klassifikasie van grondbedekking deur middel van afstandswaargeneemde data is 'n kritiese eerste stap in die grootskaalse monitering van die omgewing, hulpbronbestuur, en streeksbeplanning. Die klassifikasietaak word bemoeilik deur uiterste atmosferiese verspreiding en absorpsie, seisoenale veranderinge, ruimtelike afhanklikheid, komplekse oppervlak-dinamika en strukture, en groot intra-klas veranderlikheid. Meeste van die onlangse navorsingswerk in grondbedekkingsklassifikasie het gefokus op die ontwikkeling van al hoe kragtiger en akkurater (maar ook meer komplekse) klassifiseerders deur–dikwels op 'n lukrake wyse–multispektrale, multitemporale multibron klassifiseerders te ontwerp met moderne masjienleertegnieke soos kunsmatige neurale netwerke, newelversamelingsleer en deskundige stelsels. Desnieteenstaande was die fokus (byna uitsluitlik) op die toenemende akkuraatheid van nuut ontwikkelde klassifiseerders. Ons sou natuurlik grondbedekkingsklassifikasie (i) so akkuraat as moontlik, maar ook (ii) so gou as moontlik wou kon doen. Ongelukkig speel die twee vereistes teen mekaar af, siende dat 'n vinniger besluit 'n laer akkuraatheid tot gevolg het; en andersom, vereis …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Land Cover Classification Using IRS-1D Data and a Decision Tree Classifier

Land cover is one of basic data layers in geographic information system for physical planning and environmentalmonitoring. Digital image classification is generally performed to produce land cover maps from remote sensing data,particularly for large areas. In the present study the multispectral image from IRS LISS-III image along with ancillary datasuch as vegetation indices, principal componen...

متن کامل

A land covers classification system for environment assessment in semi-arid regions of Iran

Land degradation is a major danger which restricting different areas of Iran. Systematic description of the environmentfor detection of environmental changes and the human-related causes and responses is essential in land cover changestudy. Use of land cover data allow detection of where certain changes occur, what type of change, as well as how theland is changing. Existing systems for classif...

متن کامل

Application of remote sensing and geographical information system in mapping land cover of the national park

The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Evaluation of Land Cover Changes Ysing Remote Sensing Technique (Case study: Hableh Rood Subwatershed of Shahrabad Basin)

The growing population and increasing socio-economic necessities creates a pressure on land use/land cover. Nowadays, land use change detection using remote sensing data provides quantitative and timely information for management and evaluation of natural resources. This study investigates the land use changes in part of Hableh Rood Watershed of Iran using Landsat 7 and 8 (Sensor ETM+ and OLI) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011